When 9:00 AM - 11:00 AM May 04, 2017
Where 1690 Beyster Building
Add event to calendar vCal
iCal

The Role of Deformation and Microchemistry in the Corrosion Processes of Type 304 Stainless Steel in Simulated Pressurized Water Reactor Environments


Kevin Fisher
Thesis Defense

Degradation of structural components in nuclear environments is a limiting factor in the lifetime of nuclear power plants. Despite decades of research on the topic, there are still aspects of the degradation phenomena that are not well understood, leading to premature failure of components that can be both expensive to repair and potentially dangerous. The current work addresses the role of material deformation on the corrosion phenomena of 304 SS in a simulated nuclear reactor environment by studying the relationship of the material microstructure and microchemistry with the resulting corrosion products using a multiscale analysis approach.

The general corrosion phenomenon was studied in relation to the surface deformation of the material, and it was determined that surface deformation not only increases the rate of oxidation, but also has a pronounced impact on the microchemical structure of the oxide film when compared to undeformed material. These findings were applied to understanding the role of deformation in the more complex corrosion phenomena of stress corrosion cracking (SCC).

In SCC experiments, material deformation in the form of cold work played a synergistic role with unique microchemical features of the materials studied to promote the cracking process under certain environmental and material heat treatment conditions. Despite the fact that the materials studied were low carbon heats of 304L SS thought to be immune to the sensitization and therefore resistant to SCC, elevated boron and delta ferrites in the material were implicated in the SCC susceptibility after heat treatment.

By studying multiple corrosion processes of 304 SS a greater understanding of the role of deformation and microchemical factors in the related corrosion phenomena has been achieved, and provides evidence that material and component fabrication, in terms of surface and bulk deformation, material microchemistry, and heat treatment must be considered to avoid degradation issues. The results are discussed in terms of using similar techniques to study additional corrosion phenomena such as corrosion fatigue cracking, as well.