STEPS NECESSARY TO CAPTURE AN IMAGE AND SAVE TO FILE

1. PROPER SAMPLE PREP (PG 2)

- 4. INIAL FOCUS IN OPTICAL IMAGING
- 2. OPEN DOOR AND INSERT SAMPLE
- 5. GO INTO BSE MODE FOR IMAGING
- 3. INITIAL PUMP TAKES APPROX 5 MIN, AFTERWARDS 30 SECS (PG 3, steps 2-3)
- 6. CAPTURE SAMPLES ON USB DRIVE

7. PERFORM
ADVANCE AND
SYSTEM
SETTINGS, SUCH
AS TAKING
MEASUREMENTS

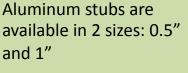
SPECIMEN PREPARATION FOR SEM

pg **2**

If specimens are nonconductive:

 They should be sputter or carbon coated before beginning placing in the SEM chamber. if samples are coated, you still need to limit beam energy to the sample.

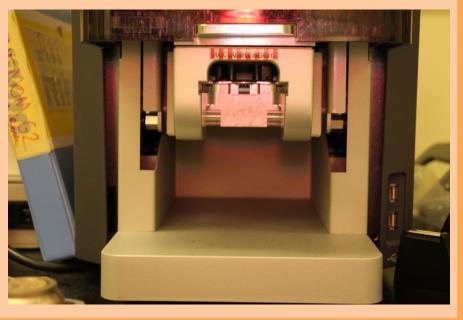
- Alternatively, low voltage can be performed (please discuss with MSE Tech staff regarding this).
- Please follow the SOP for coating your specimen for more details.


For free standing metallic samples:

- Need to make a connection with the sample to the aluminum stub.

Conductive samples in metallographic mount:

- Need to make a connection from sample to stub by attaching tape to specimen
- For more information on metallographic prep, please see the SOP for LECO Mounting Press and ATM Grinder/Polisher



Carbon tabs, carbon paste and copper tape are available to attach samples to stub and to provide a conductive pathway out of specimen.

TIP:

For mounted samples, if looking at the edge of the sample either use conductive mounting material or lightly sputter coat to reduce image distortion and charge buildup in the nonconductive mounting material. Slide the door up to reveal sample holder and insert desired holder with sample

Make certain to have the sample at appropriate height for imaging, data collection and to prevent damage to the SEM's center column:

- Position at 2mm (4 notches) for most applications
- Further away to achieve a very low magnification image and greater depth of field (furthest is 12mm)

Samples must be less than 1 inch in diameter to fit in holder

Two types of sample holders:

Tip: The SEM goes into hibernation mode when not in use for more than 72 hours. Before preparing specimen, wake the SEM from it's hibernation mode by pressing the Power button_____

Instrument is hibernating

Or by pressing the eject button in the software

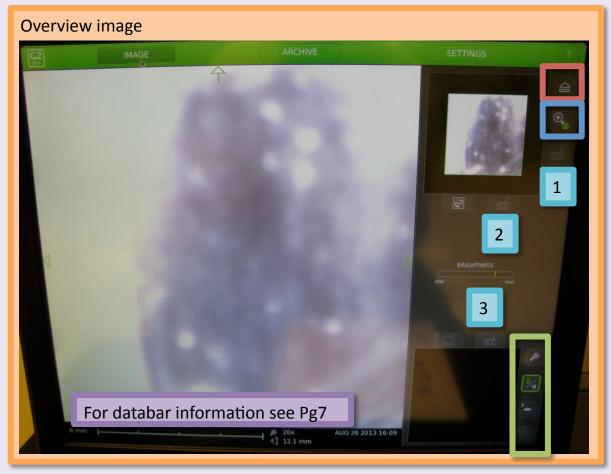
This process takes approximately 5 minutes. After initial wakeup, process should take approximately 30 seconds to install new samples and be in SEM mode

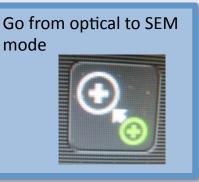
After inserting a sample, imaging goes into and depending on working distance(WD), optical mode for imaging less than 400x magnification - SEM mode is greater than 100 - 400x (depending on WD)

Adjust contrast/brightness, focus in optical imaging to help initial focus when going to SEM mode

 If focus is at minimum or maximum, remove sample and lower specimen further to prevent damage to SEM column and to allow focusing in SEM mode

To make any adjustments manually, either the mouse, or scroll knob can be used. The screen is touch sensitive as well. (for touch screen calibration please see MSE tech staff)




Auto adjustments can be turned on or off, for certain items, by touching and holding the focus or contrast/brightness symbol (whichever is desired) until the "A" symbol appears. Then retouch the button for the auto adjustment.

Fine adjustments can be turned on or off, for certain items, by tapping the magnification, focus or rotation symbol (whichever is desired) the "F" symbol appears. Repeat the process to turn back to coarse controls.

FEI Phenom SEM Operating Instructions

DETAILS OF IMAGE SCREEN

pg**5**

Magnification

- Coarse or
- Fine (F) adjustment

Contrast/Brightness

- Manual or
- Automatic (A)

Focus

- Coarse or
- Fine (F) adjustment

Image Rotation

- Coarse or
- Fine adjustment

Capture an image

Appears in 3 locations and image type:

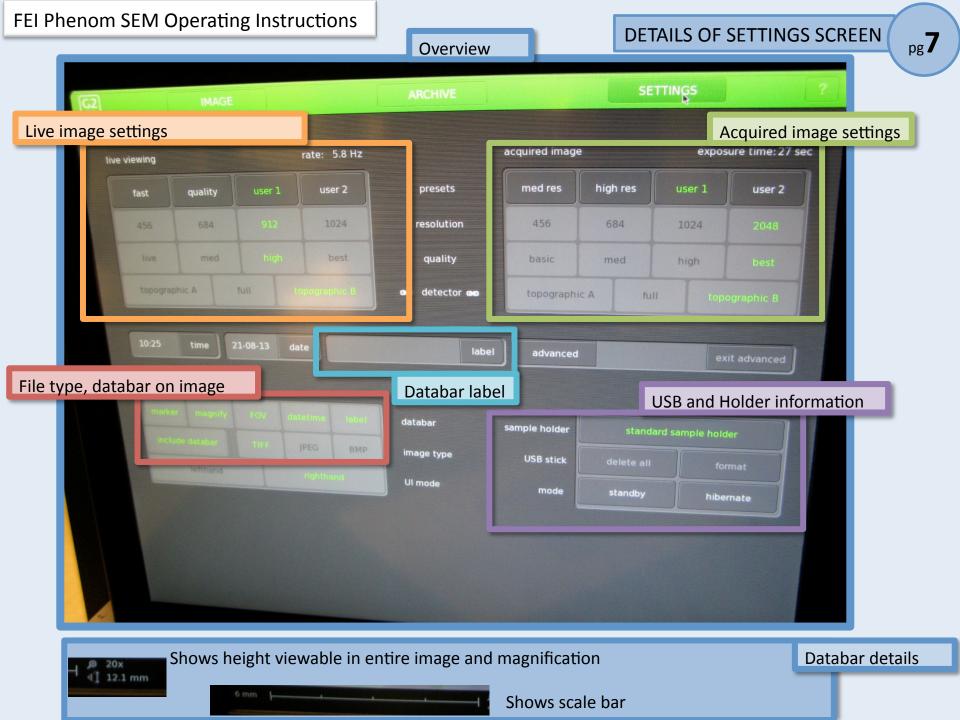
- 1. Image of full frame SEM or optical
- 2. Overview of optical
- 3. Overview of SEM mode (need to press the overview button first)

Double tap an image to enlarge it

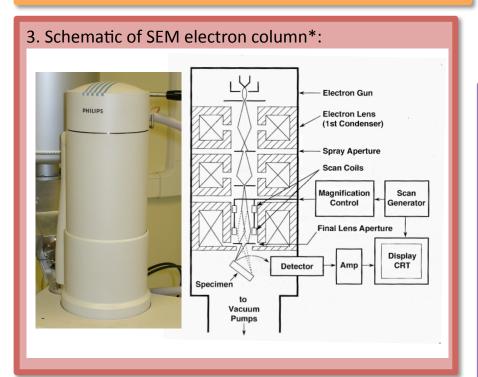
Eject

Delete File

Pin image to compare images, then use rotary to switch images


Take measurements on screen

Save any changes to a new file

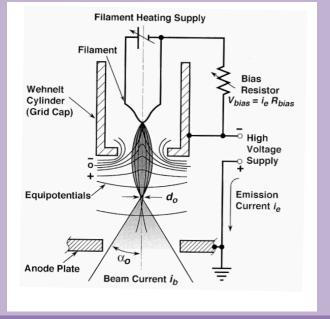


6. **TIP**: There are alternative directions for saving an image found in the SOP for the EDAX software.

pg8

1. **JEOL's Introductory Guide to the SEM** provided to us by EMAL can be found on the online SOP for the XL30 SEM and in the logbook next to the unit

5. Image showing tungsten hairpin. The electron source is 30-100 microns*.



2. A more comprehensive study of the SEM and EDAX analysis can be found in the text book, *"Scanning Electron Microscopy and X-Ray Microanalysis" by Goldstein, Newbury, Joy, Lyman, Echlin, Lifshin, Sawyer and Michael. This book can be found in 2224B, Justin Scanlon's office.

4. Schematic diagram of the conventional self-biased thermionic tungsten hairpin electron gun*:

6. **TIP**: <u>Practice makes perfect</u>. The more usage of the SEM you take advantage of, the more comfortable with the controls and you will be able to get the desired images.