Organic/inorganic hybrid composites from cubic silsesquioxanes

Richard Laine

J. Choi, J. Harcup, A.F. Yee, Q. Zhu, and R.M. Laine (2001)

J. Am. Chem. Soc., 123:11420-30.

A new class of epoxy nanocomposites with completely defined organic/inorganic phases was prepared by reacting octakis(glycidyldimethylsiloxy)octasilsesquioxane [(glydicylMe2SiOSiO1.5)8] (OG) with diaminodiphenylmethane (DDM) at various compositional ratios. The effects of reaction curing conditions on nanostructural organization and mechanical properties were explored. A commercial epoxy resin based on the diglycidyl ether of bisphenol A (DGEBA) was used as a reference material throughout these studies. FTIR was used to follow the curing process and to demonstrate that the silsesquioxane structure is preserved during processing. OG/DDM composites possess comparable tensile moduli (E) and fracture toughness (KIC) to, and better thermal stabilities than, DGEBA/DDM cured under similar conditions. Dynamic mechanical analysis and model reaction studies suggest that the maximum cross-link density is obtained at N = 0.5 (NH2:epoxy groups = 0.5) whereas the mechanical properties are maximized at N = 1.0. Digestion of the inorganic core with HF followed by GPC analysis of the resulting organic tether fragments when combined with the model reaction studies confirms that, at N = 0.5, each organic tether connects four cubes, while, at N = 1.0, linear tethers connecting two cubes dominate the network structure. Thus, well-defined nanocomposites with controlled variation of the organic tether architecture can be made and their properties assessed.

Hybrid composites, silsesquioxanes