Tuteja's anti-frost coatings project receives CNAP funding

Professor Anish Tuteja's groundbreaking research is one of six projects selected for funding by the Carbon Neutrality Acceleration Program (CNAP).
Tuteja's anti-frost coatings project receives CNAP funding

The Graham Sustainability Institute’s Carbon Neutrality Acceleration Program (CNAP) recently announced $1,160,000 in funding for six new faculty research projects, including MSE Professor Anish Tuteja's breakthrough anti-frost coatings.

CNAP is a multi-year, multimillion-dollar program created in 2020 with a $5 million gift from anonymous donors. Including these grants, CNAP has a 20-project portfolio totaling nearly $3 million. The Michigan Memorial Phoenix Fund provided additional funding this round to support nuclear-related projects.

The six new CNAP projects continue to draw on the breadth of expertise across U-M. They tackle a range of carbon neutrality topics and augment the CNAP portfolio, which addresses six critical technological and social decarbonization opportunities: energy storage; capturing, converting, and storing carbon; changing public opinion and behavior; ensuring an equitable and inclusive transition; material and process innovation; and transportation and alternative fuels.

Tuteja's anti-frost coatings can help heat pumps through harsh winters

The use of heat pumps is becoming more common in residential buildings and newer electric vehicles (EVs) because of their dramatic potential to reduce greenhouse gas emissions. Air-sourced heat pumps (ASHP) are the most widely used type of heat pump because they combine precise temperature control with high energy efficiency and low initial installation costs.

The major barrier to utilizing ASHPs in colder environments is frosting, which occurs when surface temperatures drop to near or below zero. As with refrigerators and air conditioners, frost forms on the pump’s coil, forcing the pump to stop supplying heat and run the energy-intensive defrost mode. This process dramatically reduces the pump’s efficiency and capacity.

This project team has recently developed groundbreaking anti-frost coatings that delay the formation of ice on a coated surface by 2,000%. Their coatings have the potential to cut the energy needed for defrosting in half, cutting overall annual heat pump energy use by > 10%. Their project aims to improve the performance of these coatings, experimentally validate the improvements, and conduct a thorough techno-economic analysis to quantify the real-world impact of the coatings in different fields of use, including EVs and buildings. 

The coatings being developed are made from bulk-scale, commercially available materials. They can significantly improve the energy efficiency of evaporator coils in refrigerators and air conditioners as well as heat exchangers in heat pumps, and will be of interest to a wide variety of potential commercial partners. In addition, the project will advance understanding of the process of frost formation on heat exchangers, as well as the economic benefits of making heat pumps frost-free.

Parth Vaishnav, School for Environment and Sustainability, is a co-investigator on this project.

Read more about the Carbon Neutrality projects.